Photosynthesis-inspired device architectures for organic photovoltaics
نویسنده
چکیده
Organic semiconductor photovoltaics offer a promising route to low-cost, scalable, emissions-free electricity generation. However, achieving higher power conversion efficiencies is critical before these devices can play a larger role in our future energy generation landscape. Organic photovoltaic devices are currently limited by two primary challenges: (1) a trade-off between light absorption and exciton diffusion and (2) low open-circuit voltage due to charge recombination at the donor-acceptor interface. In this work, we demonstrate two new device architectures inspired by photosynthesis that aim to overcome these two challenges. First, we overcome the trade-off between light absorption and exciton diffusion by introducing an external light absorbing antenna layer. We model energy transfer from the antenna to the charge generating layers via surface plasmon polariton modes in the interfacial thin silver contact and via radiation into waveguide modes. We experimentally demonstrate devices with both single layer antennas and strongly absorbing resonant cavity antennas. We measure energy transfer efficiency from the antenna layer to the PV active layers as high as 51±10%. We discuss structural design criteria and describe ideal antenna material characteristics. Second, we reduce charge transfer state recombination in organic photovoltaics by inserting a thin interfacial layer at the donor-acceptor interface. The thin interfacial layer creates a cascade energy structure that destabilizes the Coulombically bound charge transfer state formed immediately following exciton dissociation. We find the optimal interfacial layer thickness to be approximately 1.5 nm. In CuPc/C60 devices, under simulated solar illumination the short-circuit current increased 34%, the opencircuit voltage increased 33%, and the power conversion efficiency increased 49%. Thin interfacial layers can also be used to study the physics of exciton separation. Thesis Supervisor: Marc A. Baldo Title: Associate Professor
منابع مشابه
Influences of Device Architectures on Characteristics of Organic Light-Emitting Devices Incorporating Ambipolar Blue-Emitting Ter(9,9-diarylfluorenes)
In this article, we report the studies of various device architectures of organic lightemitting devices (OLEDs) incorporating highly efficient blue-emitting and ambipolar carriertransport ter(9,9-diarylfluorene)s, and their influences on device characteristics. The device structures investigated include single-layer devices and multilayer heterostructure devices employing the terfluorene as one...
متن کاملOrganic photovoltaics
In the last ten years, the highest efficiency obtained from organic photovoltaics (OPVs), such as bulk heterojunction polymer:fullerene solar cells, has risen from 2.5 to 11 %. This rapid progress suggests that the commercialization of OPVs should be realized soon if we can solve some technical issues. The advances in the development of OPVs can be attributed to four fronts: (i) a better unders...
متن کاملDevice architectures in organic photovoltaics
The various device structures used in organic polymer solar cells are reviewed. The operating principles behind these devices are explained in order to provide the reasoning behind the different structures. The incorporation of nanostructures into both bilayer and bulk heterojunction devices to improve exciton separation, charge transport, and light absorption is discussed. Novel ideas such as ...
متن کاملNano-Engineering of Hybrid Organic Heterojunctions with Carbon Nanotubes to Improve Photovoltaic Performance
Organic-inorganic hybrid photovoltaics are beginning to show significant promise as a low cost highly efficient route towards renewable energy generation. Of the hybrid architectures available, carbon nanotube incorporated organic photovoltaics is considered to be among the most promising. Herein, the optical and electronic effects of localizing multiwalled carbon nanotubes in the donor polymer...
متن کاملOrganic photovoltaics: technology and market
Organic photovoltaics has come into the international research focus during the past three years. Up to now main efforts have focused on the improvement of the solar conversion efficiency, and in recent efforts 5% white light efficiencies on the device level have been realized. Despite this in comparison to inorganic technologies low efficiency, organic photovoltaics is evaluated as one of the ...
متن کامل